
Navy Enterprise Maintenance
Automated Information System

(NEMAIS)

Testing Strategy
APP 003

Version 1.2

May 7, 2001

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy ii 05/07/01

Table of Contents

1.0 PURPOSE .. 1
2.0 DOCUMENT INTERFACES .. 1
3.0 SCOPE OF THE PROJECT.. 1
4.0 TESTING GOALS AND OBJECTIVES.. 2
5.0 AUTOMATED TOOLS.. 3

5.1 TestDirector ... 3
5.2 WinRunner QuickTest for R/3... 4
5.3 WinRunner... 4
5.4 LoadRunner.. 4

6.0 CLIENT STRATEGY .. 4
7.0 INFRASTRUCTURE TESTING... 5
8.0 TESTING STRATEGY PROCESS FLOW ... 5

8.1 Business Processes and Requirements... 7
8.2 Configurations and Settings/Functional and Technical Specifications 7
8.3 Solution.. 7
8.4 Unit Test... 7

8.4.1 SAP Unit tests using WinRunner QuickTest for R/3.. 8
8.4.2 Unit tests using WinRunner .. 9

8.5 Transport to TST Instance ... 9
8.6 Execute Unit Tests in TST instance... 9
8.7 Regression Testing... 9
8.8 Commence Pre-Integration Defect Tracking ... 10
8.9 Parameterize Unit tests .. 10
8.10 Verify Parameterized Unit Tests.. 10
8.11 Build Scenarios (Using Parameterized Unit Test Scripts)... 10
8.12 Test Scenarios .. 10
8.13 String Scenarios ... 10
8.14 Test Readiness Review .. 11
8.15 Refresh TST Instance... 11
8.16 Integration Testing ... 11
8.17 System/Stress Testing .. 12

8.17.1 Performance Criteria ... 13
8.18 User Acceptance Testing ... 14

9.0 DEFECT MANAGEMENT ... 15
9.1 Defect Tracking Workflow .. 17

9.1.1 Execute Test Case ... 17
9.1.2 Test Results ... 17
9.1.3 Identify Defect... 17
9.1.4 Duplicate Defect.. 17
9.1.5 Characterize Defect and Enter into TestDirector .. 17

9.1.5.1 Categorize Defect... 18
9.1.5.2 Assign Criticality Level ... 19

9.1.6 Notification of Defect.. 20

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy iii 05/07/01

9.1.7 Initiate Defect Resolution... 20
9.1.8 Verify Defect Resolution .. 20

9.2 Defect Reporting.. 21
10.0 TRIAGE TEAM/ESCALATION PROCEDURE .. 22
11.0 TESTING METRICS ... 23
12.0 TRAINING .. 24
13.0 ROLES AND RESPONSIBILITIES ... 25

Appendices

A. ACRONYMS AND ABBREVIATIONS ..A-1
B. DEFINITIONS.. B-1

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy iv 05/07/01

List of Figures and Tables

Figure 8.0-1 Testing Strategy Process Flow.. 6
Figure 8.17-1 Manual vs Automated Testing.. 12
Figure 8.17-2 Load vs Stress Test .. 13
Table 8.17.1-1 Performance Criteria from Proposal ... 13
Figure 9.0-1 Defect Tracking Process.. 16
Table 9.1.4.1-1 Defect Category and Suggested Resolution Approach 18
Table 9.1.4.2-1 Defect Criticality Levels .. 19
Table 9.2-1 Defect Reports from TestDirector ... 21
Table 10.0-1 Escalation TimeTable ... 23
Table 11.0-1 Suggested Metrics.. 24
Table 13.0-1 Roles and Responsibilities .. 25

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy v 05/07/01

I. Referenced Documents

Client Strategy-System Landscape;
January 22, 2001

Navy Enterprise Maintenance Automated Information
System (NEMAIS) SAP Client Strategy, Version 1 (part
of APP 006)

IEEE Std 610.12-1990 – IEEE
Standard Glossary of Software
Engineering Terminology

IEEE Standards Collection Software Engineering 1997
Edition

NEMAIS PMP; November 22, 2000 Navy Enterprise Maintenance Automated Information
System (NEMAIS) Project Management Plan

IT Server Environment for
Development/Test Implementation

Navy Enterprise Maintenance Automated Information
System Work Product ARC-013

IT Process and Procedures Navy Enterprise Maintenance Automated Information
System Work Product ARC-018

Requirements Matrix Navy Enterprise Maintenance Automated Information
System Work Product BUS-011

High Level Business Process Flow Navy Enterprise Maintenance Automated Information
System Work Product BUS-013a

Detailed Business Process Flow Navy Enterprise Maintenance Automated Information
System Work Product BUS-013b

NETS POPP 2 Navy Enterprise Team Ships Program Office Policy and
Procedure 2, Program Terminology (Rev A)

NETS POPP 8 Navy Enterprise Team Ships Program Office Policy and
Procedure 8, Team Core Hours

NETS POPP 37 Navy Enterprise Team Ships Program Office Policy and
Procedure 37, DOORS Application

Project Proposal – Volume II Volume II of accepted proposal to RFQ N00024-00-Q-
5229.

Configuration Management Plan Navy Enterprise Maintenance Automated Information
System (NEMAIS) CDRL 7

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy vi 05/07/01

Complete Detailed List Library Navy Enterprise Maintenance Automated Information
System (NEMAIS) Work Product ENG-022

Integration Test Plan Navy Enterprise Maintenance Automated Information
System (NEMAIS) Work Product APP-070

User Acceptance Test Plan Navy Enterprise Maintenance Automated Information
System (NEMAIS) APP-076

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 1 05/07/01

1.0 PURPOSE

The purpose of this document is to define the Testing Strategy and establish the testing protocol
that will be used by the Navy Enterprise Team Ships (NETS) in implementing Phase A of the
Navy Enterprise Maintenance Automated Information System (NEMAIS) Enterprise Resource
Planning (ERP) SAP solution and related “bolt-on” applications as they enable the business
processes of regional and enterprise maintenance for Navy vessels. This document provides the
Testing Strategy to be used for ensuring that the NEMAIS ERP solution meets all of the
requirements identified to support enabling the Phase A “to-be” business processes in a timely
and efficient manner. Refer to section 8.1 for further discussion on requirements and business
processes. Subsequent NEMAIS project phase testing strategies will be based on this initial
Testing Strategy document.

The NETS attaches a very high level of importance to thorough and effective testing at all stages
of the NEMAIS project; therefore, it is imperative that all NETS project members review,
understand and implement the testing processes identified in this document. Failure to adhere to
the testing discipline could result in potential defects remaining undetected until after the “go-
live” phase resulting in possibly serious or catastrophic failure of the NEMAIS business
processes.

2.0 DOCUMENT INTERFACES

This document is considered a ‘living’ document and will be updated as other work products and
events that feed this document are completed.

This document is intended to receive input from the following work products or events:
• BUS-001 Scope Refinement and Process Selection
• BUS-090 High Level Implementation Strategy
• Installation of Automated Testing Tools
• Installation of Requirements Management Tool

This document feeds the following work products or events:
• APP-054 Future Baseline Package System
• APP-060 Final Configured System and Unit Test
• APP-063 Integration Test Scenarios
• APP-070 Integration Test Plan
• APP-076 User Acceptance Test Plan

3.0 SCOPE OF THE PROJECT

NEMAIS will be implemented as a six-phase project, comprised of Phases A through F. The
NEMAIS solution enables ship maintenance business processes spanning the hierarchies and the
regions of the Navy from shipboard (O-level) to shore-based activities (Intermediate (I) and
Depot (D) levels. A high level description of the project scope can be found in the NEMAIS

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 2 05/07/01

Project Management Plan (PMP). The Scope and Approach (ENG 020) document will provide
the detailed description of the scope of this project from a solution perspective.

The components of the solution have been chosen for their ability to implement Naval
maintenance processes across the entire Navy enterprise. The various components of the
solution are illustrated in Section 6.2 of the PMP in Figure 5.

The core of the NEMAIS solution will be enabled by SAP's R/3 product, version 4.6c, with the
Industry Specific – Public Sector (IS-PS)-2 industry-specific solution for US Federal accounting.
All modules are available, but the initial design proposed centers the solution in Plant
Maintenance (PM), with the other modules described in the PMP, Section 6.0, Table 8.

Refer to the PMP for additional detailed information regarding the NEMAIS solution.

4.0 TESTING GOALS AND OBJECTIVES

The goal of the Testing Strategy is to institutionalize a testing process that will verify the
integrity of the system at specific stages of the project as illustrated in Figure 8.0-1. All business
processes will be verified to work as designed and as expected by performing testing in a
structured and disciplined manner. The ultimate goal of testing is to validate that the business
can operate with sufficiently low risk on the new solution.

An objective for testing is, to the maximum extent possible, automatically validate all SAP
configurations, ABAP development and bolt-on development before they are transported from
development to test and on to the production environment, subsequently releasing the production
version with no critical defects. The automated testing philosophy employed for this project
consists of the following:

• automate tests wherever practical
• generate reusable scripts that can be used to test all modifications before production
• test all solutions selected for this implementation

The final milestone of testing is to conduct a successful User Acceptance Test (UAT) effort that
results in an acceptance signoff by the nominated Navy representatives for the Phase A final
system that meets or exceeds expectations.

The NEMAIS Testing Strategy is driven by the guiding principles of
• testing at the specified stages (see Figure 8.0-1)
• identifying defects early

The Testing Strategy process flow (Figure 8.0-1) illustrates the steps required at each testing
stage to provide the building blocks necessary to complete successful Integration, Regression,
System/Stress and User Acceptance Testing. Satisfactory execution of this process flow relies
heavily on the collaboration of the Testing Team, Module Teams, Programming Team,
Infrastructure Team, Basis Team and Change Management Team, as the project evolves and as
virtual testing teams are built.

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 3 05/07/01

5.0 AUTOMATED TOOLS

Mercury Interactive has been selected as the automated testing tool vendor for the NEMAIS
project. Four (4) of Mercury’s test tools will be utilized. The test tools are TestDirector,
WinRunner QuickTest for R/3, WinRunner and LoadRunner. The following sections describe
each tool in more detail.

Telelogic has been selected as the software vendor to provide the automated requirements
management tool for the NEMAIS project. Project requirements will be managed using
Telelogic’s Doors. Telelogic’s DOORS and Mercury Interactive’s TestDirector will be
interfaced through Telelogic’s DOORSConnect to manage and track the link between tests and
requirements. The use of the Telelogic tools will be discussed in greater detail in the
Configuration Management Plan and POPP 37 (DOORS Application).

The use of the automated tools selected for this project supports the automated testing
philosophy by:

• supporting regression testing as defined in section 8.7
• allowing the Testing Team to develop automated testing scenarios for regression testing

of business processes,
• allowing the Testing Team to run automated tests unattended 24 hours a day, if required
• increasing the speed of testing while maintaining the requisite accuracy
• reducing testing cycle time and resources required to execute tests
• simulating multiple persons performing entry of data
• providing reusable scripts for each stage of testing

5.1 TestDirector

TestDirector will be the repository of all tests and test sets that will be used to test the NEMAIS
solution.

Tests will be recorded by designated Module team members using either WinRunner QuickTest
for R/3 (section 5.2) or WinRunner (section 5.3) and saved in TestDirector. Tests may also be
manually created and will be entered directly into TestDirector by designated Module Team
members. The Test Leads will manage all tests stored in the TestDirector repository. Tests used
for System/Stress Testing performed in LoadRunner will be selected by the Test Leads from the
tests saved in TestDirector.

Test defects will be managed and reported from TestDirector. Refer to section 9.0 for additional
information regarding defect management and tracking.

Testing metrics will be generated from TestDirector. Reports and graphs can be customized
within TestDirector, as required, to provide information of interest at all levels within the project
team. Refer to section 11.0 for additional information regarding testing metrics.

Tests will be linked to requirements through DOORSConnect, the interface between
TestDirector and Telelogic’s DOORS requirements management tool.

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 4 05/07/01

TestDirector provides the ability to automatically contact designated users via a rules based e-
mail notification feature. Defect attribute fields can be selected to notify users according to their
area of responsibility. The rules for automatic notification can be modified at any time during
the project, and will be managed and monitored by the Test Leads to effectively use this feature
without overburdening project resources with information overflow. TestDirector also provides
the ability to manually e-mail defect information to selected users.

5.2 WinRunner QuickTest for R/3

WinRunner QuickTest for R/3 was developed with an understanding of the SAP R/3 graphical
user interface (GUI) for the purpose of testing SAP R/3 applications.

Tests will be recorded in the SAP environment by designated Module team members using
WinRunner QuickTest for R/3 and saved in TestDirector where design steps will be
automatically created as part of the ‘save’ process. Situations may occur where automatic test
script creation is not possible due to the nature of the configuration. In these situations, which
are expected to be minimal, manual test script creation will be required. Manual scripts will also
be saved in TestDirector by designated Module team members.

5.3 WinRunner

WinRunner will be used to record tests for all non-SAP applications. Tests recorded using
WinRunner will be saved in TestDirector by designated Module team members. Situations may
occur where automatic test script creation is not possible. In these situations, which are expected
to be minimal, manual test script creation will be required. Manual scripts will also be saved in
TestDirector by designated Module team members.

5.4 LoadRunner

LoadRunner will be used for System/Stress Testing of the NEMAIS “to-be” solution.
LoadRunner licenses for 2000 virtual users have been procured for Phase A of this project and
will be used to support simultaneous testing of the system. The number of LoadRunner licenses
procured for Phase A is based on testing the system to twice the number of users on line at
anyone time. For the Norfolk SIMA there are about 2500 users of which approximately one-
third are online at any one time. Future NEMAIS phases will require additional LoadRunner
licenses proportional to the estimated number of users for each phase implementation.

Tests will be selected from the automated tests saved in TestDirector for use with the
LoadRunner testing tool. Details of the selection process will be included in the System Test
Plan.

6.0 CLIENT STRATEGY

The Client Strategy-System Landscape (part of APP 006) defines the five instances that will be
used during the NEMAIS project. The document also defines the transport strategy and clients
included within each instance. It is essential that the reader become familiar with the contents of
the Client Strategy-System Landscape to assist in better understanding the remaining content of
the Testing Strategy.

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 5 05/07/01

The following are the assignments for the five instances defined in the Client Strategy-System
Landscape:
1. DEV (used for Development)
2. TST (used for Testing)
3. PRD (used for Production)
4. TRN (used for Training)
5. SHO (portable, used for Road Show Demos)

Transport Management is the SAP tool used for moving configuration and object changes from
one instance to another. The approval workflow for transports is defined in the Client Strategy-
System Landscape and will govern the promote to production process for the NEMAIS project.

7.0 INFRASTRUCTURE TESTING

Infrastructure Testing is performed by the Infrastructure and Basis Teams and is comprised of
testing for Failover, Hardware/Software Validation, Disaster Recovery, Failure Component and
Backup and Recovery. Definitions for each of these types of testing are documented in
Appendix B. The Infrastructure Team will document the details of Infrastructure Testing in the
NEMAIS project work products ARC-013 - IT Server Environment for Development/Test
Implementation and ARC-018 - IT Process and Procedures. Refer to these documents for
detailed information regarding Infrastructure Testing.

8.0 TESTING STRATEGY PROCESS FLOW

Figure 8.0-1 illustrates the process workflow associated with the NEMAIS project Testing
Strategy. The following subsections provide details on the actions performed within each
workflow step. Each workflow box includes the identification of the associated Test Strategy
subsection and the TST client supporting the performance of each process flow step.

Satisfactory completion of each process flow step requires the involvement of Module Team
members knowledgeable in the affected business areas and the associated functionality
requirements to ensure the NEMAIS testing objectives and test schedules are met.

Satisfactory completion of each process flow step includes the verification of associated tests,
test sets, and test scenarios at key points in the process flow illustrated in Figure 8.0-1. These
key points are discussed in the following sub-sections.

Verification ensures that test scripts operate as intended, that scripting errors are not present, and
that all required input data is valid. Verification of an automated test will require successful
playback of the test script in its entirety with the actual test results matching the expected
designed results. Verification of a manual test requires that actual test results match the expected
designed results.

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 6 05/07/01

Figure 8.0-1 Testing Strategy Process Flow

Requirements
Matrix
BUS-011

"To-Be" Business
Processes

BUS-013a
BUS-013b

User
Requirements

Functional and
Technical

Specifications

Configurations
and

Settings

 DOORS

Section 8.1 Section 8.2

Configure SAP

ABAP
- Miscellaneous
- Reports
- Data Migration
- Interfaces

Bolt-Ons

Data
Migration

Interfaces

SolutionDEV/005

Section 8.3

Unit Test

Winrunner (WR)
Quicktest WR

Save to Test Director

Section 8.4

Transport
Configuration

to
Test Instance

 (TST)
Section 8.5

DEV/025

TST/015

Execute
 Unit Tests

in
TST Instance

TST/035

Section 8.6

Parameterize
 Unit Test

TST/025/035/...

Section 8.9

Commence Regression
Testing (RT)

 Commence Pre-Integration
Defect Tracking (PIDT)

Verify
Parameterized

Unit Test

Build Scenarios
String

Parameterized
Test Scripts

Test Scenarios
String

Scenarios
to Build

End-End

Refresh TST
Instance

Delete TST Work
Clients

Integration
Testing

end - to - end

System/
Stress

Testing

UAT
Demonstrates

Functionality to satisfy
user

Requirements

Go - Live

- Metrics
- Reports
- Status

Maintained in
TestDirector Defect Tracking

(Figure 8.1-1)

TST/025/035/... TST/025/035/...

TST/025/035/... TST/025/035/...

TST...

(RT)
(PIDT)

(RT)
(PIDT)

(RT)
(PIDT)

(RT)
(PIDT)

Section 8.10 Section 8.11

Section 8.7

Section 8.8

Section 8.12 Section 8.13 Section 8.15
Section 8.16 Section 8.17 Section 8.18

(RT)
(PIDT)

TST/025
TST/025

Test Readiness
Review (TRR)

Section 8.14

Link to Requirements

Section 11

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 7 05/07/01

8.1 Business Processes and Requirements

Business processes for the “to-be” environment will be identified and documented in two
separate work documents, BUS 013a for the High Level Business Process Flow and BUS 013b
for the Detailed Business Process Flow. The business process requirements will be documented
in BUS 011 Requirements Matrix. The information in each of these documents will be entered
and maintained in the requirements management tool Telelogic’s DOORS.

8.2 Configurations and Settings/Functional and Technical Specifications

The configuration process will begin as user requirements are identified and determined to be in
scope for Phase A of the NEMAIS project. The Module Teams will determine configurations
and settings and will identify gaps in functionality and any ABAP development necessary to
satisfy the user requirements. Functional and technical specifications will be generated by the
Data Migration and Programming Teams and other teams responsible for interfacing the bolt-ons
with the SAP R/3 solution.

Identifiers for configurations and settings and functional and technical specifications will be
entered in the requirements management tool, Telelogic’s DOORS, and linked to user
requirements and business processes as discussed in POPP 37 DOORS Application.

8.3 Solution

Module Teams will configure the SAP R/3 system and generate requests for ABAP development
to satisfy requirements of the NEMAIS solution. ABAP development may be required for
functionality gaps, customized reporting, data migration, interfaces and bolt-ons. As
configurations are made and ABAP code developed, Unit Configuration Testing and Unit
Testing of Development will be performed, respectively. These tests are described in more detail
in the next section.

8.4 Unit Test

Unit tests will be created in the DEV instance by the Module Teams and Programming Team
using the Mercury Interactive test suite. In contrast to unit testing performed during standard
software development projects, SAP R/3 projects perform two different types of unit testing,
Unit Configuration Testing, performed by the Module Teams, and Unit Testing of Development,
performed by the Programming Team. Unit testing is often referred to as “White Box” testing
where the internal logic of the software program is tested. For SAP R/3, which is a commercial
off the shelf product, no “White Box” testing will be performed since the SAP R/3 system is
essentially a “Black Box” to the individuals configuring the software. Therefore, Unit
Configuration Testing can be referred to as “Black Box” testing, where the input and expected
results are devised based only on the requirements with no need for knowledge of the software’s
internal logic. Unit Testing of Development, which is most similar to standard software
development unit testing where the internal logic is of concern, can be referred to as “White
Box” testing.

Naming conventions for unit tests will be described in a later document or added as an Appendix
to this document after the automated testing tool and requirements management tool have been

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 8 05/07/01

installed and configured. All unit tests recorded with WinRunner QuickTest for R/3 and
WinRunner will be saved in Mercury Interactive’s TestDirector and any test that cannot be
automated will be manually created and loaded into TestDirector. The saved tests will include
the information required to link the tests to the corresponding detailed process or processes
documented in Telelogic’s DOORS as BUS-013b. The specific information required to create
these links will be captured in TestDirector user defined fields created after BUS-013b is
completed.

As discussed in section 5.0, tests will be linked to requirements using Telelogic’s
DOORSConnect. General (BUS 013a) and detailed (BUS 013b) business processes and
associated requirements (BUS 011) will be maintained in Telelogic’s DOORS as separate
modules. In addition, a module created to capture the test information transferred through
Telelogic’s DOORSConnect from TestDirector will be used to link tests at the unit level prior to
the transport of the most recent configuration from DEV 005 to the TST instance.

Prior to recording a unit test both the data and the screen flow associated with a configured
transaction must be determined to ensure the test is recorded efficiently and accurately.
WinRunner QuickTest for R/3 and WinRunner capture the data used during the recording of a
test as a constant value. As a result, this data is used each time the test is executed. Therefore, it
is imperative that the configuration tested by a unit test be checked to ensure that the reuse of the
same data for each additional test execution will not cause failure. If the functionality of the
configuration requires unique data for each unit test execution, the recorded test script must be
modified in order to support the completion of unit testing in the DEV instance. This
modification is referred to as parameterization. Initial parameterization will be performed by the
Module Teams. The Testing Team will perform additional parameterization as addressed in
section 8.9. Regardless of the type of data required, each unit test will be verified as described in
section 8.0 prior to a transport occurring. Completion of this verification will be captured by the
promote to production process (part of APP 006) which governs the documentation for
validating transports.

Automated and manual unit tests, for a given transport, will be verified by the Module Teams
prior to performing the transport to the TST instance and other instances.

There may be situations in which configurations for a given transport are dependent on
configurations to be included with future transports. Unit tests associated with these
configurations will be categorized as “on-hold” and will be tracked and managed in Test
Director. In addition, the number of tests in this “on-hold” category will be reported as a key
metric during the configuration phase.

8.4.1 SAP Unit tests using WinRunner QuickTest for R/3
Module Teams configuring SAP will record unit tests using Mercury Interactive’s WinRunner
QuickTest for R/3. The recorded tests will be saved in Mercury Interactive’s TestDirector. The
act of recording the test will create a QuickTest script that can be subsequently executed as
required. TestDirector will automatically create test steps for each recorded test as part of the
save process.

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 9 05/07/01

Each individual that creates a unit test should review the test steps created by TestDirector and
modify the steps as required for completeness and accuracy. As previously discussed, the data
used to execute the test is captured when the unit test is recorded. Any additional information or
special instructions regarding the data should also be added to the test steps. User fields will be
created in TestDirector to capture the transport number of the configuration covered by a given
unit test.

It is considered best practice and both preferred and recommended that unit test scripts be
recorded and verified by the Module Teams before the configuration is keyed into the Master
Client 005 of the DEV instance. After the configuration has been entered in Master Client 005
and transported back to clients in the DEV instance, as described in the Client Strategy-System
Landscape, each test should again be verified by the Module Teams. It is important to perform
this second verification to ensure that the test script operates as intended and that tests do not fail
due to errors in scripts, data or errors associated with the manual entry of the configuration into
DEV 005. Unit tests are subject to configuration management once the transport occurs.

8.4.2 Unit tests using WinRunner
For any non-SAP testing, unit tests will be recorded using the WinRunner tool. Recorded tests
and any manually created tests will be saved in TestDirector. It is important that Module Teams
ensure that unit test scripts operate as intended and that tests do not fail due to errors in scripts or
data.

8.5 Transport to TST Instance

New configuration will be transported to the TST instance from the DEV instance as required.
Transports are governed by the contents of the Client Strategy-System Landscape document.

8.6 Execute Unit Tests in TST instance

Once a transport has been imported into the TST instance, new and modified unit tests for that
transport will be executed by the Testing Team using the TST instance. Execution of the tests in
TST ensures the integrity of the configured solution associated with each test was maintained
through the transport process.

8.7 Regression Testing

After each transport to the TST instance, regression testing will be performed by the Testing
Team using the TST instance to verify the integrity of the transport. The Test Leads will create a
regression test set in TestDirector that will contain all tests to be included in the regression test
run. Unit tests associated with any given transport will be included in the regression test set after
the tests have been verified by the Testing Team in the TST instance, as discussed in section 8.6.
Before executing the regression test run, the Test Leads will review the regression test set and
will exclude any unit tests associated with modified configuration for the current transport, since
these tests require re-execution in the TST instance (section 8.6) prior to inclusion in the
regression test set. Unit tests identified as ”on-hold”, as discussed in Section 8.4, will also be
excluded from the regression test set.

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 10 05/07/01

8.8 Commence Pre-Integration Defect Tracking

Any defects encountered after executing the unit tests in the TST Instance, section 8.6, and up to
the commencement of Integration Testing, section 8.16, will be managed within TestDirector as
pre-integration test defects. Communication with the Module Teams will be critical to ensure
quick removal of these defects so there is no negative impact on either new configuration efforts
or configurations dependent on resolution of defects.

8.9 Parameterize Unit tests

Once a unit test is verified in the TST instance, the test will be modified by the Testing Team to
use data sets that can be fed from Excel spreadsheets. These data spreadsheets can be generated
manually or from databases. Parameterized tests will be renamed using the convention
<testname-p> to indicate parameterization. Additionally, a user field in TestDirector will be
created to track whether a test is parameterized and will be set to “Y”.

Detailed information regarding the naming of tests throughout the testing process for all tests
will be included in a later document or added as an Appendix to this document after the
automated testing tool and requirements management tool have been installed and configured.

8.10 Verify Parameterized Unit Tests

The Testing Team will be responsible for verifying the parameterization modifications made to
unit tests to ensure that the scripts are performing correctly and that any data provided is
appropriately cleansed and accurate. After verification, unit tests can be combined in test sets to
correspond to business scenarios.

8.11 Build Scenarios (Using Parameterized Unit Test Scripts)

Within TestDirector, tests will be grouped in test sets that will be used to verify the operation of
a business scenario. Unit tests will be strung together in test sets to create realistic and integrated
business process scenarios based on the information provided by the Module Teams in BUS 13b
Detailed Business Process Flow. Only unit tests that have been parameterized and verified will
be included in these test sets.

8.12 Test Scenarios

Once test sets are built they will be verified by the Testing Team to ensure that the test flow is
correct and to ensure that scripts still operate with data provided. Any scripting or stringing
defects encountered will be tracked, resolved, re-tested and cleared in a timely fashion.

8.13 String Scenarios

Verified test scenarios described in Section 8.12 will be combined in larger test sets by the
Testing Team, with input from the Module and Business Transformation Teams, to begin
building the end to end testing scenario required during integration testing. These end-to-end
testing scenarios will be verified and corrected as necessary.

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 11 05/07/01

8.14 Test Readiness Review

A Test Readiness Review (TRR) will be conducted no less than two (2) weeks prior to the
scheduled start of Integration Testing. The details of the test readiness review will be provided
in the Integration Test Plan. A TRR will also be performed prior to System Testing and UAT.

8.15 Refresh TST Instance

As described in the Client Strategy-System Landscape (part of APP 006), client 025 in the TST
instance will be refreshed to prepare for Integration Testing. This refresh will ensure TST 025 is
prepared for performing the necessary data loads, end-to-end testing and testing of user profiles
during the integration test effort. The TST instance will also be refreshed prior to System
Testing and UAT. Refer to the Client Strategy-System Landscape document for a detailed
description of the refresh process.

8.16 Integration Testing

Integration Testing will be performed to validate that all of the software components of the
NEMAIS solution work properly together and operate according to the requirements (BUS-011 –
Requirements Matrix) generated for this project.

As depicted in the Testing Strategy Process Flow (Figure 8.0-1), Integration Testing will be an
evolutionary process that is driven by and builds upon previous testing efforts. As discussed in
section 8.11 the test scenarios that were developed from unit testing will be reviewed and, where
appropriate, selected and evolved into a realistic and integrated business process scenario or
process flow. Where necessary, more than one scenario for a given business process may be
evolved to ensure that all significant process variants are included for testing.

Integration Testing will focus on cross-functional integration points, including external
interfaces, as well as end-to-end business processes. Since knowledge of the internal logic of the
software is not required to support integration testing, it is often referred to as “Black Box”
testing. A well defined Integration Test Plan (APP 070) will be prepared by the Testing Team,
with input from the Module Teams, that schedules resources, including testers, and tests to be
performed to satisfy the Integration Test. The test plan will also address the exit criteria to be
reviewed and approved by applicable stakeholders and NETS management.

Integration Testing is scheduled to begin approximately four (4) months before the go-live date,
will be conducted for a period of six (6) weeks and will require a resource team of approximately
twenty (20) to twenty-five (25) testers. This virtual testing team will be made up of members
from the NETS team, including consultants and Navy personnel, subject matter experts and
module experts. Testers on this virtual testing team must be 100% dedicated to the scheduled six
(6) week Integration Test effort in order to complete the effort in the time allotted. It is
important to have segregation of duties between testers and configurers in order to more
efficiently resolve defects and to avoid delays in testing. While not rigidly enforced, this
segregation can be achieved by leveraging the Business Transformation and Module Team
distinctions. Module Team members will be responsible for resolving defects and Business
Transformation Team members will be responsible for performing the Integration Testing. The
Integrated Test Plan will expand upon the roles and responsibilities of the Testing Team.

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 12 05/07/01

A facility must be ready two (2) weeks prior to the start of Integration Test to allow for setup and
shakedown. The facility must have connectivity to both the testing tools and the TST instance.
Additional details for facility requirements will be described in the Integration Test Plan.

Defects will be tracked and managed throughout the integration process using TestDirector.
Refer to the section entitled Defect Tracking in this document for further discussion of defects.

A number of metrics, reports and status will be provided during the Integration Testing effort
that will be available in TestDirector and can be made available on the NETS website. Refer to
section 10.0 in this document for additional details regarding testing metrics for this project.

8.17 System/Stress Testing

System Testing will commence when Integration Testing is complete, will be performed in the
same facilities used for Integration Testing, and is scheduled as a three (3) week event.
Responsibility for the planning and conducting of System Testing will be shared by the IT
Architecture Team, Basis Team and Testing Team. A well-defined plan will be created by these
teams to govern the System Testing effort. This plan will become part of ENG-022 Complete
Detailed Test Library. A TRR will be performed and the TST instance will be refreshed prior to
commencing testing as illustrated in Figure 8.0-1. For the NEMAIS system, load and stress tests
will be performed to validate both the general system acceptability and ‘stress’ test performance.
Stress testing involves the execution of a pre-defined series of tests against the system under test
(SUT). These tests are typically executed at high, concurrent volumes, making it impractical to
assemble hundreds or thousands of computer systems, with operators, to generate the desired
load. For this project Mercury Interactive’s LoadRunner will be used. LoadRunner enables user
actions to be scripted and later replayed upon demand. Once created, the script can be used to
generate the workload of tens or hundreds of virtual users on a single, powerful computer as
depicted in Figure 8.17-1.

User Actions

Client

Client

Client

System Under Test Load Generator

Client

Client

Client

User Actions

User Actions

Scripted Actions

Manual Testing Automated Testing

Actions of multiple real clients (left) can be simulated by a single load generator (right)
Figure 8.17-1 Manual vs Automated Testing

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 13 05/07/01

LoadRunner licenses for 2000 virtual users have been procured for this project and will be used
to support simultaneous load testing of the system.

If volumes of traffic required are greater than one client system can generate, multiple client
systems can be concatenated together and centrally controlled.

The objective of load testing for the NEMAIS project will be to determine how the SUT
performs under an artificially generated user load based upon real world execution scenarios.
These scenarios will include typical transaction mixes, transaction arrival rates, and user think
time.

Stress testing is not intended to simulate real world usage. Instead, it is used to determine the
breaking point of a specific subsystem or set of subsystems by placing an inordinate amount of
stress upon the SUT. Unlike load testing, stress test cases executed against the SUT do not
contain user think time. Instead, test cases are executed as quickly as possible in a back-to-back
fashion. Stress tests may or may not contain a transaction mix, depending upon test objectives.
Despite different objectives, both load and stress testing utilize the same tool set and test
methodology. Figure 8.17-2 graphically depicts the differences between load and stress testing.

Stress Test

Stress Test
Generator

Load Test
Generator

System
Under Test

Load Test

Load tests (left) include think time between virtual user actions; stress tests (right) do not.
Figure 8.17-2 Load vs Stress Test

8.17.1 Performance Criteria
Performance criteria and response time criteria are defined in the response to RFQ N00024-00-
Q-5229. The criteria listed in Table 8.17.1-1 is consistent with industry standards and will be
used for reference purposes only in this document and to demonstrate the types of criteria that
will be used for the System Test.

Table 8.17.1-1 Performance Criteria from Proposal

Performance Test Threshold
Time for initial screen display to appear 2 sec
Delay before “processing: Please Wait” message appears 2 sec
Simple form display: data from less than three dynamic tables and five lookup
tables

 1 sec

Complex form display: data from three or more dynamic tables and five or more
lookup tables

 2 sec

Simple form update: data from less than three dynamic tables and five lookup 1 sec

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 14 05/07/01

tables.
Complex form update: data from three or more dynamic tables and five or more
lookup tables

 2 sec

Display 200,000 byte graphic image 3 sec
Simple query of 100,000 database records from a single table, select and display
list of 500

10 sec

Complex query of 100,000 database records joining three or more tables, select
and display list of 500 records

30 sec

8.18 User Acceptance Testing

User Acceptance Testing will commence when Systems Testing is complete. Responsibility for
the planning and oversight of User Acceptance Testing will be shared between the Change
Management Team and the Testing Team. A well-defined User Acceptance Test Plan will be
created by the Testing Team, with support from the Change Management Team, that schedules
resources and tests to be performed to satisfy the User Acceptance Test. The plan will also
address the performance of a TRR and a refresh of the TST instance prior to commencing testing
as illustrated in Figure 8.0-1. Additional responsibilities are discussed in section 13.0, Roles and
Responsibilities.

User Acceptance Testing is scheduled as a three (3) week event and will be performed in the
same facility used for the Integration Testing effort. User Acceptance Testing will be performed
by a group of users that have been identified and scheduled by the Change Management Team.
Selection of these users should be completed at least 3 months before the commencement of
UAT to allow for the completion of administrative and training requirements. Personnel
assigned to the user group should be temporarily assigned to the NETS team to ensure they are
capable of providing 100% dedication to the testing effort. The group should be made up of
twenty (20) to twenty-five (25) members from the user community.
Users selected for this effort should:

• understand the core business processes that are included in the NEMAIS solution
• represent a cross section of relevant functional experience with respect to the core

processes included in the NEMAIS solution.
• be recognized within the user community as representatives and spokespersons for the

user community

Once selected these users should receive, prior to the commencement of UAT
• applicable user training on the SAP application solution, including any associated bolt-

ons, for the role they will perform
• training on the “To Be” processes included in the NEMAIS solution
• training on the Mercury Interactive Tool Set
• training on Requirements Traceability, including Telelogic’s DOORS

Defects will be tracked using TestDirector during the User Acceptance Testing effort. Refer to
the following section entitled Defect Tracking in this document for further discussion of defects.

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 15 05/07/01

The exit and acceptance criteria for the User Acceptance Testing effort will be described in APP-
076 User Acceptance Test Plan.

9.0 DEFECT MANAGEMENT

When actual test results do not match expected results, a defect is reported. Defects for the
NEMAIS project will be recorded, tracked, cleared and reported using Mercury Interactive’s
TestDirector tool. The NEMAIS defect tracking workflow is illustrated in Figure 9.0-1 and
described in the following subsections.

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 16 05/07/01

Figure 9.0-1 Defect Tracking Process

Execute Test
Case Test Results Identify

Defect

Initiate defect
resolution

Test case
Complete

 Status Updated
in Test Director

Enter Defect
in Test Director

Pass

Fail

Notification of
defect

Characterize
Defect

1) Category
2) Corrective
 Action
3) Date
4) Criticality
5)

e-Mail Notification

9.1.1
9.1.2

9.1.3

9.1.5

9.1.6
9.1.7

Verify Defect
Resolution

9.1.8

Duplicate
Defect No

Yes

9.1.4

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 17 05/07/01

9.1 Defect Tracking Workflow

A number of steps are involved in identifying, reporting and resolving defects, each of which
must be completed for every defect discovered during a test phase. The following sub-sections
provide a summary description of each defect tracking workflow step.

9.1.1 Execute Test Case
The tester initiates action to create a test run to validate one or several test cases or test sets. A
test run may be required due to a new transport, regression testing, creation of a new test set
corresponding to a scenario or to verify defect resolution.

9.1.2 Test Results
The results of each test will be evaluated by the tester executing the test. The Pass/Fail criteria
should be based on whether the actual results match the expected results. Once the status of the
test is determined the tester should follow the applicable path as illustrated in Figure 9.0-1.

9.1.3 Identify Defect
Tests that result in a ‘Fail’ status should be evaluated to determine the cause of the failure. The
tester will identify the cause of the failure and record a succinct summary of the defect. This will
allow the tester to check for any duplicate or similar defects previously documented in
TestDirector as discussed in the next section, 9.1.4.

9.1.4 Duplicate Defect
TestDirector provides the ability to search for similar or duplicate defects already documented in
the defect tracking repository. The tester will use this unique functionality to locate similar or
duplicate defects, previously documented in TestDirector, to ensure defects are only tracked once
within the defect tracking system. If no duplicate or similar defect exists, the tester will proceed
to the next section as illustrated in Figure 9.0-1. If a duplicate defect is located, the tester will
not complete the entry of the defect into TestDirector and will inform the Test Leads of the
duplication. The Test Leads will confirm that the defect is a duplicate and check the resolution
status of the initial defect documentation and update the status of the defect in the TestDirector
defect tracking system.

9.1.5 Characterize Defect and Enter into TestDirector
After the tester executes the test run and compares actual results to expected results, the tester
will enter identified defects, including duplicates, in the automated test tool manager
TestDirector. A number of system fields are configured in TestDirector to capture defect
information and additional user fields will be created to capture project specific information.
Prior to completing the entry of a defect in TestDirector, the tester should ensure that the defect
has been characterized by entering the applicable data in these system and user fields at the time
of entry. Details of the defect data elements and procedures to assign value to the data elements
will be described in a later document or added as an Appendix to this document after the
automated testing tool and requirements management tool have been installed and configured.

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 18 05/07/01

9.1.5.1 Categorize Defect
Defects will occur due to a number of different causes. It is incumbent upon each tester to
ensure the root cause of every test failure is correctly identified and categorized. Correctly
distinguishing between the types of defects and implementing the appropriate resolution is a key
factor in ensuring the quality of the solution is maintained. Defects for this project will be
categorized as listed in Table 9.1.5.1-1. Included with each category of defect are suggested
resolution approaches.

Table 9.1.5.1-1 Defect Category and Suggested Resolution Approach

Defect Category Criteria and Suggested Resolution Approach
Design Defect The system actually meets the functionality documented and managed

in the requirements traceability tool (Telelogic’s DOORS); however,
the documented requirements are incorrect due to an omission or
misinterpretation of the user requirements.
Resolution - Identify the defect, evaluate the defect to determine the
correct set of requirements and appropriate design change, manage the
defect for correction in the current or future project phase, and retest.

Configuration Defect The configuration made as part of the system solution is defective in
that it does not meet the user functional requirements documented and
managed in the requirements traceability tool (Telelogic’s DOORS) or
it fails to function.
Resolution - Identify the defect and assign the responsibility for
resolution to the applicable Module Team. The Module Team will
resolve the defect during Phase A and the tester will retest the corrected
configuration. The defect will be cleared after validating the test.

ABAP Coding Defect The ABAP program is defective in that it does not meet the user
functional requirements documented and managed in the requirements
traceability tool (Telelogic’s DOORS) or the program fails to function.
Resolution - Identify the defect and assign the responsibility for
resolution to the Programming Team. The Programming Team will
resolve the defect during Phase A and the tester will retest the corrected
program. The defect will be cleared after validating the test.

Vendor Software
Defect

The COTS software does not operate as documented.
Resolution - Identify the defect, assign the responsibility for notifying
SAP to the applicable Module Team. The Module Team will be
responsible to work with SAP to resolve the defect during Phase A.
The tester will retest the corrected software at the first available
opportunity after receiving notification from the Module Team that the
defect is resolved. The defect will be cleared after validating the test.

Testing Defect The tester executed the test case incorrectly, or misread/misinterpreted
the results of the test, or the script/scenario was ill constructed.
Resolution - Identify the defect, correct the defect and re-perform the
test case.

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 19 05/07/01

Defect Category Criteria and Suggested Resolution Approach
Data Quality Defect There was a defect in the incoming event data resulting in the test

anomaly.
Resolution - Identify the defect, correct the faulty data and re-perform
the test.

9.1.5.2 Assign Criticality Level
The following is a high level discussion on the process of assigning a level of criticality to a
defect. The detailed process that will be used for the NEMAIS project will be initially identified
in the Phase A Integration Test Plan and will be incorporated in all future NEMAIS project test
plans. The assignment of criticality levels to each defect documented in TestDirector will be
determined by the members of the Triage Team. The Triage Team is discussed in more detail in
section 10.0 of this document.

Criticality level numbers range from 1 to 5, with criticality level 1 being the highest and 5 being
the lowest. The Module Leads should use criticality level numbers for allocating resources to fix
the problems found. The criticality levels to be used and their meanings are identified in Table
9.1.5.2-1. The criticality levels identified are based on documentation in the IEEE Standards
Collection Software Engineering 1997 Edition.

Table 9.1.5.2-1 Defect Criticality Levels

CRITICALITY APPLIES IF A PROBLEM COULD:

1 CRASH/LOCK-UP
a. Prevent the accomplishment of an operational or mission essential

capability
b. Jeopardize safety, security, or other requirement designated "critical"

2 TECHNICAL PROBLEM (major) with No WORK AROUND
a. Adversely affect the accomplishment of an operational or mission

essential capability and no work-around solution is known
b. Adversely affect technical, cost, or schedule risks to the project or to

life cycle support of the system, and no work-around solution is known

3 TECHNICAL PROBLEM (major) with WORK AROUND
a. Adversely affect the accomplishment of an operational or mission

essential capability but a work-around solution is known
b. Adversely affect technical, cost, or schedule risks to the project or to

life cycle support of the system, but a work-around solution is known

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 20 05/07/01

CRITICALITY APPLIES IF A PROBLEM COULD:

4 TECHNICAL PROBLEM (minor)
a. Result in user/operator inconvenience or annoyance but does not affect

a required operational or mission essential capability
b. Result in inconvenience or annoyance for development or support

personnel, but does not prevent the accomplishment of those
responsibilities

5 MINOR - Any other effect, cosmetic problems

9.1.6 Notification of Defect
As previously discussed in section 5.1, TestDirector will be configured to automatically notify
designated users via a rules based e-mail notification feature that will be managed by the Test
Leads. TestDirector also provides the ability to manually e-mail defect information to selected
users, which will be implemented as required by the Test Leads.

9.1.7 Initiate Defect Resolution
Defect correction for software defects will be the responsibility of the Module and/or
Programming Team, as applicable. Defect correction for other types of defects listed may
require Module, Programming, Data Migration and Testing Teams to correct the defect.
Correction of defects should occur as prioritized by the Triage Team and discussed in section
10.0.

The applicable team leads will be responsible for timely correction of defects identified during
each phase of testing to ensure that the project, and particularly the testing process, stay on
schedule.

When a defect is taking longer to fix than expected, depending upon the nature of the defect, a
procedure for escalation has been defined in section 10.0 (Triage Team/Escalation Procedures) to
address timely defect correction. In addition, any defects/issues that cannot be resolved will also
require escalation.

Additional details identifying the process to assign a criticality level to a defect and the
responsibility for assignment of criticality levels will be addressed in the test plans for
Integration Test, Systems Test and User Acceptance Test.

All critical defects will be fixed or resolved prior to going live and will be addressed for
resolution according to the criticality assigned by the Triage Team.

9.1.8 Verify Defect Resolution
After the defect is identified as resolved, the Testing Team will verify that defect corrections
have been successfully completed. The resolution will be verified by adding the associated test
to a new test case as illustrated in Figure 9.0-1. The corrective action will be deemed successful
and assigned a status of ‘Pass’ only when the actual results match the expected results. In all
cases, the Testing Team member performing the test will notify the Test Leads of the Pass/Fail
status of the defect correction testing and the Test Leads will update the status of the defect in

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 21 05/07/01

TestDirector. Only the Test Leads will have the authority for closing defects.

9.2 Defect Reporting

The defect tracking database maintained in Test Director will be used to generate reports that can
be reviewed by project management, the project team and stakeholders. These reviews may be
performed to evaluate the progress of the project, the quality of the solution, and the likelihood
of the solution meeting quality targets before implementation. Table 9.2-1 lists a sampling of the
reports available from Test Director for defect analysis. Other reports will be customized in
TestDirector to generate reporting information required for this project.

Table 9.2-1 Defect Reports from TestDirector

View Description/Purpose
Open Defects by:
• Priority
• Severity
• Assigned to (Team)
• Assigned to (Individual)
• Detected By

• Shows all defects by the views listed
• Used for periodic reporting when a full view of open

defects is required.

Pending/Re-Test by:
• Priority
• Severity
• Assigned To (Team)
• Assigned To (Individual)
• Detected By

• Shows all defects migrated to system test by the views
listed

Closed Defects by:
• Priority
• Severity
• Assigned To (Team)
• Resolved By
• Re-Tested By
• Reason Code

• Shows all closed defects by the views listed
• Used when a full view of closed defects is required

Late Defects by:
• Priority
• Severity
• Assigned To (Team)
• Assigned To (Individual)

• Shows all late defects by the views listed
• Used for program level reporting

All Defects by:
• Priority
• Severity
• Status
• Assigned To (Team)
• Assigned To (Individual)

• Shows all defects by the views listed
• Used to view defects regardless of status

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 22 05/07/01

10.0 TRIAGE TEAM/ESCALATION PROCEDURE

A Triage Team will be established to assign defect criticality levels and determine the
prioritization and resolution of defects and of testing related issues that arise during the
Integration Testing and User Acceptance Testing efforts. The team will meet daily during the
test effort and will be chaired by the Test Leads. Issues may include such items as allocation of
resources, schedule requirements, and any factor that may impact the satisfactory completion of
the testing effort. The team will be comprised of representation from all Modules, Security,
Nuclear, IT, ABAP and Basis, Change Management, Project Management and Testing.
Individuals assigned to the Triage Team must be technically and functionally knowledgeable of
the solution processes to ensure an accurate resolution of each issue. Details governing the
specific responsibilities of this team during each testing effort will be amplified in the respective
test plans.

The testing effort and resolution of defects and testing related issues should occur during the
working core hours as defined in POPP 008 Core Hours. Resources should be available (on-call)
after core hours to address defect resolution. A point of contact (POC) should be assigned to
coordinate defect resolution within each team and should have the responsibility of contacting
on-call personnel to support resolution of defects after core hours. The use of the on-call process
will be discretionary and will be based on the priority/impact level assigned each defect.

All test defects and testing related issues identified during Integration Testing and User
Acceptance Testing should be resolved as discussed in the following paragraphs

Since NEMAIS is a multi-phased project that may allow or require that certain defects be
deferred for resolution in a later phase, the Triage Team must identify candidate defects for
deferral and process them for approval. Defects that do not qualify as candidates for deferral
should be resolved as discussed in section 9.1.7.

Defects proposed for resolution in a later phase must be approved through the escalation process
managed by the Triage Team. Defects approved for deferral to a later phase will be annotated as
such by the Test Leads in TestDirector. Defects proposed for deferral, but not approved, should
be resolved as discussed in section 9.1.7.

The primary function of the escalation process is to alert senior management to a defect/issue
requiring resolution that may adversely impact testing and the project schedule. The process
should also be used when a recommendation to postpone the resolution of defects/issues is
submitted. The Triage Team will assign a priority level to each defect/issue at the first Triage
meeting following discovery of the item. The priority level assigned should be based on the
impact the item has on the project delivery schedule and the criticality level assigned in section
9.1.5. The priority/impact level assigned should assist senior management in making informed
decisions that will facilitate the effective and efficient resolution of the defect/issue.

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 23 05/07/01

Escalation of defects/issues should be based on the priority/impact level assigned by the Triage
Team. The following addresses the expected steps and associated time frame for
resolving/escalating a defect/issue.

High Priority/Impact level defects/issues should be resolved as discussed in section 9.1.7 within
one working day following the Triage meeting that assigned the priority/impact level.
Preliminary assignment of a High Priority/Impact level to a defect/issue prior to the Triage
meeting is considered appropriate and will be reviewed by the Triage Team to confirm the
assignment. Team Leads are expected to take action to facilitate the immediate resolution of the
item. The escalation process will be invoked if the item is not resolved at the end of the first day
and will be escalated to the next level for each day the item remains unresolved.

Medium Priority/Impact level defects/issues should be resolved as discussed in section 9.1.7
within two working days following the Triage meeting that assigned the priority/impact level.
The escalation process will be invoked if the item is not resolved at the end of the two days and
will be escalated to the next level for each day the item remains unresolved.

Low Priority/Impact level defects/issues should be resolved as discussed in section 9.1.7 within
three working days following the Triage meeting that assigned the priority/impact level. The
escalation process will be invoked if the item is not resolved at the end of the three days and will
be escalated to the next level for every two days the item remains unresolved.

The escalation timetable, based on defect/issue priority/impact, is summarized in Table 10.0-1.
Depending on schedule progress, the time frames in Table 10.0-1 may be compressed as
determined by the Triage Team.

Table 10.0-1 Escalation TimeTable

Priority
/Impact

Expected
Resolution Time

Level 1 Escalation
Team Leads

Level 2 Escalation
Domain Manager

Level 3 Escalation
Project Executives

High 1 Day* +1 Day* +1 Day* +1 Day*
Medium 2 Days* +1 Day* +1 Day* +1 Day*
Low 3 Days* +2 Days* +2 Days* +2 Days*

* 1 Day = core hours workday as defined in POPP 008.

11.0 TESTING METRICS

As stated in the response to RFQ N00024-00-Q-5229, status metrics fall into one of two broad
categories:

• Measures of effectiveness that gauge the solution’s success, and
• Measures gauging the health of the NEMAIS development effort

It is the intent of the Testing Team to assist the NETS in meeting the objectives of providing the
best value to the Navy and maximizing customer satisfaction by implementing a functional
metrics process for testing. The Testing Team will use and capture metrics during each testing

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 24 05/07/01

phase to facilitate the management of the “go-live” strategy and to measure the quality and
efficiency of the testing process. Mercury Interactive’s TestDirector and Telelogic’s DOORS
will be used to track and report on the metrics captured for the NEMAIS ERP solution. Several
of the key metrics that can be captured and managed through TestDirector and Telelogic’s
DOORS include but are not limited to those listed in Table 11.0-1.

Table 11.0-1 Suggested Metrics
Report Description
Requirements Traceability Matrix Provide data to identify whether enough of the

application has been tested
Test Case Creation Completeness Provide information that allows monitoring of

the status of test preparedness.
Defect Status Report Provides information to support monitoring the

status of each documented defect with respect
to new/open/assigned/fixed/re-tested/closed
deferred.

Defect Arrival/Closure Rate Provide the data to help analyze the trend of
defect detection and closure to allow for an
informed decision on the risk of releasing the
solution.

Defect Removal Efficiency Provides the data to support monitoring the
rate of defect correction, which can assist in
identifying work assignment disparities or staff
burdens as well as pinpoint potential design or
requirement deficiencies.

After a complete analysis of the functionality of TestDirector and Telelogic’s DOORS, in
conjunction with the release of the NETS project Implementation Strategy, a more detailed list of
metrics will be documented in the test plans created for Integration, User Acceptance and System
Testing as they apply to the project and each test phase.

12.0 TRAINING

Fifteen (15) days of on-site consulting for the Mercury Interactive tool suite have been procured
for this project. A portion of this consulting time will be used for training. The specific training
plan and content of training will be developed by the Change Management Team and Testing
Team in conjunction with Mercury Interactive after the tool set has been installed and after the
Testing Team, in conjunction with the IT Infrastructure Team, has ensured that the tool is
appropriately configured. This training will occur before Module Teams are required to begin
recording unit tests.

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 25 05/07/01

13.0 ROLES AND RESPONSIBILITIES

The roles and responsibilities of NETS team members regarding test efforts have been addressed
throughout the document. For clarification, Table 13.0-1 summarizes these roles and
responsibilities.

Table 13.0-1 Roles and Responsibilities
Role Responsibilities

Test Team 1) Develop automated testing scenarios for regression testing of
business processes in the TST instance

2) Manage the execution of automated tests unattended 24 hours a
day, if required

3) Manage defect tracking and reporting in TestDirector
4) Generate test related metrics from TestDirector
5) Manage the links between TestDirector and Telelogic’s

DOORS
6) Manage the automated and manual defect notification process

in TestDirector
7) Manage the LoadRunner test tool to support System/Stress

testing
8) Manage the clients in the TST instance
9) Create and manage user fields in TestDirector
10) Implement configuration management for unit tests after the

associated configuration is transported to the TST instance
11) Re-execute the unit test after the satisfactory transport of the

associated configuration to the TST instance.
12) Manage pre-integration defects
13) Parameterize unit tests in preparation for integration testing
14) Verify operability of parameterized unit tests
15) Build scenarios by grouping parameterized unit tests
16) String the business scenarios to perform end-to-end integration

testing.
17) Develop Integration Test Plan and User Acceptance Test Plan
18) Coordinate the planning and performance of System/Stress

testing
19) Participate in the selection of tests to be used for UAT
20) Track and report UAT defects encountered
21) Manage and conduct the UAT effort
22) Identify exit and acceptance criteria for integration and user

acceptance testing.
23) Have sole responsibility for annotating defects as resolved in

TestDirector.
24) Make determination of when to stop or continue testing based

on defect quantity and criticality
25) Chair the Triage Team

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 26 05/07/01

Role Responsibilities
Module Team 1) Record unit tests using either WinRunner QuickTest for R/3 or

WinRunner in the DEV instance
2) Save recorded tests in TestDirector to support test management

and the automatic creation of design steps
3) Save manually created tests in TestDirector
4) Enter descriptive test information in TestDirector
5) Review and modifying design steps as required for completeness

and accuracy
6) Perform Unit Configuration Testing
7) Verify each unit test prior to keying the associated configuration

into Client 005 of the DEV instance.
8) Verify each unit test prior to the transport of the associated

configuration to the TST instance.
9) Resolve defects
10) Provide the information required to allow the grouping of tests to

create business scenarios.
11) Assist in development of the Integration Test Plan
12) Provide personnel to support the integration test effort.
13) Provide representation on triage team

Integration Test
Team

1) Perform Integration Testing
2) Identify, document and verify uniqueness of defects
3) Capture and document testing data metric

Project Team 1) Provide representation on triage team
2) Support the escalation process

Change Management
Team

1) Identify the individuals to perform the User Acceptance Testing
2) Schedule the UAT participants availability to perform the

testing
3) Train the UAT participants
4) Provide input into the selection of tests to be used for UAT
5) Create documentation to be used for training and execution of

User Acceptance tests
6) Support conducting the UAT effort
7) Define UAT feedback, other than defects, through the Regional

Representatives
8) Provide representation on triage team

Programming Team 1) Record unit tests using either WinRunner QuickTest for R/3 or
WinRunner

2) Save recorded tests in TestDirector to support test management
and the automatic creation of design steps

3) Enter descriptive test information in TestDirector
4) Review and modifying design steps for clarity

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy 27 05/07/01

Role Responsibilities
5) Perform Unit Testing of Development
6) Provide representation on triage team

Basis Team 1) Assist in the planning and performance of System/Stress testing
2) Perform disaster recovery testing
3) Perform backup and recovery testing
4) Perform failover testing
5) Perform Hardware/Software validation testing
6) Provide representation on triage team

Infrastructure Team 1) Provide resources to support establishment of a test facility
prior to commencing integration testing.

2) Assist in the planning and performance of System/Stress testing
3) Perform disaster recovery testing
4) Perform backup and recovery testing
5) Perform failover testing
6) Perform Hardware/Software validation testing
7) Provide representation on triage team
8) Develop Infrastructure test plan and perform Infrastructure

testing

Triage Team 1) Assign defect criticality levels
2) Determine prioritization of defects and testing issues
3) Determine resolution of defects and testing issues
4) Manage the escalation process
5) Compress escalation process time frames as dictated by

schedule requirements
Requirements
Management Lead

1) Manage requirements and business processes in Telelogic’s
DOORS

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy A-1 05/07/01

A. Acronyms and Abbreviations

ABAP Advanced Business Application Programming
ABC Activity Based Costing
AUT Application Under Test
CATS Cross Application Time Sheet – part of HR SAP module
CM Configuration Management
CO Controlling SAP Module
D level Depot Level Maintenance
DEV Development instance of SAP
DM Document Management
DOD Department of Defense
EHS Environmental Health and Safety
FI Finance SAP Module
FM Funds Management SAP Module
GUI Graphical User Interface
HR Human Resources SAP Module
I Level Intermediate Level Maintenance
IPT Integrated Product/Process Team
IS-PS-2 Industry Solutions – Public Sector –Federal Government Accounting SAP Module
IV&V Independent Verification and Validation
MM Material Management SAP Module
MS Microsoft
NEMAIS Navy Enterprise Maintenance Automated Information System
NETS Navy Enterprise Team Ships
O Level Organizational Level Maintenance
PM Plant Maintenance SAP Module
PRD Production instance of SAP
POPP Program Office Policy and Procedure
PS Project Systems SAP Module
QM Quality Management SAP Module
QSS Quality Systems and Software (software vendor)
RRC Regional Repair Center
RT Regression Test
RTM Requirements Traceability Matrix
SAP Systems, Applications & Products in Data Processing
SHO Road Show instance of SAP
SSL System Supplying the Load
SUT System Under Test
TMS Transport Management System
TRN Training instance of SAP
TST Integration Testing instance of SAP
UAT User Acceptance Test
WF Work Flow SAP Module

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy B-1 05/07/01

B. Definitions

Backup And
Recovery Testing

Testing performed by the Infrastructure and Basis Teams to ensure
that a system can be restored from a backup.

Configuration In SAP configuration is the customization of system settings made to
satisfy project governing design specifications.

Defect When tests are created, expected results are documented. When tests
are run and actual results do not match expected results, a defect is
reported.

Disaster Recovery
Testing

Disaster Recovery Testing will be planned and performed by the
Infrastructure and Basis Teams to simulate a system failure during
critical system processes and to demonstrate recovery of databases to
a usable state.

Failover Testing Testing performed by the Infrastructure and Basis Teams to ensure
that in the event of a Production (PRD) instance failure the system
will revert to and begin operating on the system designated for this
purpose, which, for this implementation, is the Testing (TST)
instance. Failover testing will affect any testing effort in progress on
the TST instance and should be scheduled to minimize the impact on
any testing performed on the TST instance.

Failure Component
Testing

Testing performed by the Infrastructure Team to determine if all
components of a given system are operational before the system is
opened to users for use.

Hardware/Software
Validation Testing

Testing performed by the Infrastructure and Basis Teams to ensure
that the installed hardware, operating system software, drivers,
patches and all server connectivity are fully functional prior to
installation of solution software. This would also include Backup
and Recovery Testing and Failure Component Testing.

Infrastructure
Testing

Testing performed by the Infrastructure and Basis Teams which
includes Failover Component, Hardware/Software Validation,
Disaster Recovery, Failure Component and Backup and Recovery
Testing. Documentation describing the details of Infrastructure
Testing will be in a work product prepared by the Infrastructure
Team.

Integration Testing Testing performed by a team comprised of both the implementation
partner and the Navy representatives to validate that all the software
components of the implementation function properly together and

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy B-2 05/07/01

operate according to the “to be” business process definitions and
governing design specifications.

In the Integration Test, a complete system will be built and tested
from components and subsystems, including internal and external
interfaces, and tested as a complete entity

Regression Testing Selective re-testing of a system or component to verify that
modifications have not caused unintended effects and that the system
or component still complies with governing design specifications.

Scenario A scenario is the equivalent of a business sub-process in Project
Office. A scenario may consist of text descriptions as well as
flowcharts used to graphically represent movement within the sub-
process

Script Scripts generally serve to document a work step or transaction. A
script contains detailed instructions to execute a work step. Typically
there are one to several scripts for a given work step. Scripts are used
for testing and training. Occasionally the term script will be used for
both the work step and the business sub-process.

Systems/Stress Test. Testing performed by a combination of IT Infrastructure, Basis and
Testing Teams to determine if the hardware components meet
volume load requirements (load testing) and required performance
levels (performance testing) across the entire architecture

Testing Testing is the process of evaluating the proposed solution under
specified conditions to detect the differences between existing and
required conditions and documenting the results.

Transaction A transaction is a work step that is executed on a system.

Transport Transport is a SAP term: It is the definition of a movement of entities
from one SAP instance or client to another.

Unit Configuration
Testing

Testing performed by the Module Teams to determine if the
configuration corresponds to the business process definitions and
business requirements.

Unit Testing of
Development

Testing performed by the programming staff to determine if the
various function modules comprising a program operate according to
the governing design specifications.

Unit Testing of
Security Access

Testing performed by the Module Team to determine if the security
access profiles correspond to the governing design specifications.

Version 1.2 Draft
Testing Strategy – APP 003

Testing Strategy B-3 05/07/01

Profiles

User Acceptance
Testing

Testing performed by stakeholder representatives to ensure that the
implementation meets the user requirements. This testing will
include functional as well as security testing. Once the tests are
completed to an acceptable level the stakeholder representatives will
approve the User Acceptance Testing as one of several steps required
to approve the system for go-live.

The User Acceptance Test (UAT) is used to demonstrate to and gain
the confidence of the user community that the system meets their
requirements and the project is ready for deployment. User
Acceptance Testing will be performed on the Testing (TST) instance,
which will mirror the intended production environment to assure that
the testing results will reflect those in the live environment. Prior to
commencing UAT, the stakeholder end user testers will be trained on
the functionality of the system as well as the use of the Operating
Procedures created to document the configuration designed for the
“to-be” business processes.

Work step Work steps further breakdown a business sub-process or scenario. A
work step may be described by text, menu paths, and screen shots.
Typically a work step is equivalent to a SAP R/3 transaction.

	Testing Strategy
	APP 003
	View
	
	
	
	Role
	Test Team
	Module Team
	Integration Test Team
	Project Team
	Change Management Team
	Programming Team
	Basis Team
	Infrastructure Team
	Triage Team
	
	
	
	Acronyms and Abbreviations
	Definitions

